

REVISED 2012 Marking Scheme

Grade Awarded	Mark F (/	Required	% candidates achieving grade				
A	7	3+	34.6%				
В	6	1+	28.9%				
С	50+		17.7%				
D	44+		7.1%				
No award <44			11.7%				
Section:		Multiple	Choice	Extended Answer			

2012 Revised Higher Chemistry Marking Scheme										
MC Qu	Answer	% Pupils Correct	Reasoning							
1	С	90	 ☑ A Cl has a larger electronegativity value tha ☑ B There is no polarity in Cl-Cl bond as both ☑ C Cl has a smaller electronegativity value th ☑ D Cl has a larger electronegativity value thc 	in Br so Cl atom carri atoms have the same an F so Cl atom carrie in I so Cl atom carrie	es the δ - charge electronegativity es the δ + charge s the δ - charge					
2	В	78 OldH=68]A Hydrogen gas H₂ has a single covalent bond inside the H₂ molecule]B Helium is a monatomic gas as it is a Noble Gas]C Nitrogen gas N₂ has a N≡N triple covalent bond inside the N₂ molecule]D Solid sulphur S8 has covalent bonds inside the S8 molecule							
3	В	90 OldH=88	 ☑ A Ionic substances are compounds between ☑ B Compounds contain bonds between atoms ☑ C Silicon Dioxide is an example of a compour ☑ D H₂O, NH₃ and CH₄ are examples of compo 	metals and non-meta ∴ monoatomic are no nd with a covalent ne unds with a molecular	ls t compounds twork structure r structure					
4	С	76 01dH=62	 ☑A Electronegativity of carbon =2.5 ∴ electro ☑B Electronegativity of oxygen =3.5 ∴ electro ☑C Electronegativity of chlorine =3.0 ∴ electro ☑D Electronegativity of phosphorus=2.2 ∴ electro 	onegativity differenc onegativity differenc ronegativity differen ctronegativity differ	e = 3.0-2.5 = 0.5 e = 3.5-3.0 = 0.5 ce = 3.0-3.0 = 0 ence=3.0-2.2 =0.8					
5	D	36 OIdH=33	A Neon atoms have no charge as they are at B Fluoride F ⁻ ions have an electron arrangen EC Sodium atoms have no charge as they are ☑D Aluminium atoms=2,8,3∴Aluminium Al ³⁺ io	toms nent of 2,8 but are na atoms ns have electron arro	egatively charged ingement of 2,8					
6	D	83 OldH=78	 ☑ A Melting point too high to be only London dispersion forces being overcome ☑ B Conductor when solid ∴ substance contains metallic bonding ☑ C Conductor when solid ∴ substance contains metallic bonding ☑ D Low melting point and non-conductor as solid consistent with LDforces only 							
7	С	60	 A Propanoic acid contains polar bonds and would not dissolve non-polar coniceine B Propan-1-ol contains polar bonds and would not dissolve non-polar coniceine C Heptane is non-polar and would dissolve non-polar coniceine D Water contains polar bonds and would not dissolve non-polar coniceine 							
8	С	57	 A Reduction is the gain of electrons (electrons on LEFT of arrow) B Redox reaction do not contain electrons (they have been cancelled out) C Oxidation is the loss of electrons (electrons on RIGHT of arrow) D Hydration occurs when H₂O is added across a C=C double bond 							
9	D	43 OldH=43	Write down main species involved Balance all atoms other than O and H Add H_2O to other side to balance O atoms Add H [*] to other side to balance H atoms Add electrons to most positive side to balance charge	IO3 ⁻ 2IO3 ⁻ 2IO3 ⁻ 2IO3 ⁻ + 12H ⁺ 2IO3 ⁻ + 12H ⁺ + 10e ⁻	$ \begin{array}{l} \rightarrow \ I_2 \\ \rightarrow \ I_2 \\ \rightarrow \ I_2 + 6H_2O \\ \rightarrow \ I_2 + 6H_2O \\ \rightarrow \ I_2 + 6H_2O \end{array} $					
10	A	79	☑A Hydration: Addition of H₂O across a C=C ☑B Hydrogenation: Addition of H₂ across a C= ☑C Condensation: Joining of two molecules wi ☑D Hydrolysis: Splitting of a large molecule i	double bond =C double bond th the removal of wa nto two with water ad	ter at the join dded at the break					
11	В	78 OldH=74	 ☑ A ethylethanoate hydrolyses to ethanol (gfm=46 ☑ B propylethanoate hydrolyses to propanol (gfm=6 ☑ C methylpropanoate hydrolyses to methanol (gfm ☑ D ethylpropanoate hydrolyses to ethanol (gfm=4 	og) and ethanoic acid (g 60g) and ethanoic acid (n=28g) and propanoic ac 6g) and propanoic acid	fm=60g) (gfm=60g) :id (gfm=74g) (gfm=74g)					

Г

	•		Am	des	Salts		Esters	
12	D	84	Amide links form groups and -COO	ed between -NH ₂ H groups of amino	Salts formed neutralisation o	d by f fatty	Fats and oils have es links between glycer	ter rol
			acids in forma	tion of protein	acids by alkalis for	rms soaps	and 3 fatty acids	
			A fats and oils ha	ve the same de	gree of hydrog	en bondi	ing (i.e. none)	
13	B	83	⊠B fats are solid be	ecause the satu	rated molecule	s fit mo tham co	re closely togethe	er
			ND fats and oil do r	osely packed ii	links between n	nem so	5	
						10100010		
1/	$\boldsymbol{\mathcal{C}}$	04	The	the stude of t	ha amida link		U H	
14	C	90	Thes	inuclure of T	ne amiae link	-	C = N =	
				• • • • • • • • •		-		
. –	•	70	A mixture of pept	ides is missing	a W-V fragmer ntide are in this	it c answer	n	
15	В	/0	C mixture of pept	ides is missing	a X-W fraamen	1t		
		OldH=74	D mixture of pept	ides is missing	a Z-X fragmen	†		
			Chemical	Solublilit	y in Water		Volatility	
16	Λ	55	Vanillin	More soluble as a	Ildehydes are more	More v	olatile as smaller molecu	iles
10	A	55	7:	Less soluble as ket	ian ketones ones are less soluble	e Less v	olatile as larger molecul	es
			Zingerone	than a	dehydes		have higher b.pt.	
			carboxylic c	icids	alcohols		aldehydes	
17	R	98	0,0				,0	
		OldH=61	$ -C''_{\sim}$	L	— ОН		- <i>C</i> [″]	
			Vi A pentan-2-ol: sec	andary alcohol	e oxidice to ket	ones	<u> </u>	
10	~	92	B pentan-3-ol: sec	ondary alcohols	s oxidise to ket	ones		
18	D	76	EC 2-methylbutan-2-ol: tertiary alcohols do not undergo mild oxidation					
		OldH=87	☑D 2,2-dimethylprop	an-1-ol: primary o	alcohol oxidises t	o aldehy	des then carboxylic	acids
			Terpenes are based on mu (isoprene is also know	ltiples of 5 carbon un vn as 2-methylbuta-1	ts of isoprene 3-diene) The	only highlig	ghted 5 carbon unit in the	question is:
			H ₂ C			1.		
19	A	75	1120	00 ((L)		r		
	••						C=CH	
			2-meth	vlbuta-1,3-diene		F	I ₃ C ² CH ₂	
			$2NO_{(a)} + O_{(a)}$		2NO ₂₍₀₎			
		58	2mol 1mo	1	2mol			
20	A	50	1mol ¹ / ₂ mo	ol	1mol			
		OldH=61	1vol ±vo	 e	1vol 1litre			
			A temperature af		of reaction but	not the	position of equilil	orium
21	D	69	⊠B at equilibrium, t	he concentration	on of reactant o	and proc	ucts are constant	-
21	D		$\blacksquare C$ in an equilibrium, 100% of the reactants are never used up					
		OldFI=71	図D in an equilibrium	1, 100% of the i	reactants are n	ever use	ed up	
		02	K Catalysts do not	change the en	sition of equilid	rium		
22	D	02	SC Catalysts do not	affect the pos	sition of equilib	rium		
		OldH=83	☑D Catalysts do no [.]	t change the en	thalpy change o	or the po	osition of equilibri	um
			CaCO ₃ +	2HNO3	Ca(N	O3)2 +	+ H ₂ O + CO	D ₂
22	~	58	1mol	2mol	1mc	bl	1mol 1mo	ol
23	C		0.05mol	0.1mol (0.1mol Ht	NO_3 required but onl	y 0.08mol	HNO3 available)	
		UIdH=65	0.04mol	0.08mol	0.04	nol	0.04mol 0.04	1mol

24	В	78 01dH=79	⊠A distance ⊠B distance ⊠C distance	A distance x represents the activation energy for the forward reaction B distance y represents the enthalpy change R→P for the forward reaction C distance x+y represents the activation energy for the reverse reaction D distance x-y does not represent anything on this graph							
25	D	78 01dH=79	■C Activatio ■B The Enth ■C Activatio ☑D Increasir	In Activation Energy E_a is not altered by changes in temperature IB The Enthalpy Change ΔH is independent of the temperature it takes place at IC Activation Energy E_a is not altered by changes in temperature ID Increasing temperature means more collision with energy greater than E_a							
26	A	36 OIdH=44	5N2O4 + 40 5mol 2mol	CH ₃ NH 4mo 4mo = 1.6m	NH x ² / nol (2	2 1 ₅ 2mol	available	→ 4C	:O ₂ + 12H ₂ O + 9N ₂ ∠	∆H=-5116 ∆H=-5116k = -2046	kJ J × ²/₅ .4kJ
27	A	49 OldH=56	Enthalpy Formation Combustion	The for a substa in tl Ener comple mol	D mation nce fr heir no rgy cho te con le of c	efini n of or rom it: atural ange f nbusti a subs	tion ne mole of s elements state or the on of one tance	2Al Al 1	Equation + $1\frac{1}{2}O_2 \rightarrow Al_2O_3$ - $\frac{3}{4}O_2 \rightarrow \frac{1}{2}Al_2O_3$	∆H -1670 kJ -835 kJ r	mol ⁻¹
28	D	54	Bond Break Bond Formi Enthalpy Cł	Bond Breaking: H _{2(g)} → 2H(g) ∴ H-H bond enthalpy Bond Forming: H(g) + Cl(g) HCl(g) ∴ H-Cl bond enthalpy Enthalpy Change = Bond Breaking Steps Bond Forming Steps = (H-H bond enthalpy) - (H-Cl Bond Enthalpy)							
29	A	23	If a pure so only be one	If a pure sample of the new compound has been produced, there would only be one spot on the chromatograph which would be neither X or Y.							
30	С	88	Student Student Student Student Student	1st A 10.0 B 6.4 C 6.5 D 9.0	2 nd 9.0 6.6 6.6 8.5	3 rd 8.0 6.8 6.6 9.6	Only stude	ent with	n 3 volumes within ± 0.2 cm ³ of	f each other	

2012 Revised Higher Chemistry Marking Scheme							
Long Qu	Answer	Reasoning					
1a (i)	Boron or carbon	Covalent Ne Type Element m.pt. (°C)	Covalent Networks are found in non-metal elements with high melting points:Typemetalnon-metalElementLiBeBCNOFNem.pt. (°C)181128720753825-210-219-220-249				
1a (ii)	Number of protons increases	Other acce	ptable answer	s: increase greater, greater	d atomic numb /positive char pull on (outer)	ber or ge (pull) or) electrons	
1a (iii)	Lithium	The strongest The strongest	reducing agents	are found at are found at	the top of the ele the bottom of th	ectrochemical series e electrochemical series.	
1b	Answer to include:	1 st mark: 2 nd mark:	Electrons are furth or Atomic size incre or Extra energy lev Screening/shielding	er away from th easing el/electron she effect in comp	ne nucleus :ll lete inner shells		
2a	4.0	Ignore rogi	Egnore rogue result (21.7) Average = $\frac{4.0+3.9+4.1}{3} = \frac{12.0}{4} = 4.0$				
2b	288g		3.3mg zinc = 100g peanuts 9.5mg zinc = 100g peanuts $\times \frac{9.5}{3.3}$ = 288g peanuts				
3 a (i)	0.125	∆H=cm∆T = 4.18 × 0.5 × 82 = -171.38kJ -1367kJ is released by burning 1 mol ethanol -171.38kJ released by 1 mol × ^{-171.38} / ₋₁₃₆₇ = 0.125mol					
3a(ii)	2 from:		heat lost to surroundings	incomplete combustion	loss (of ethano through evaporat	l) ethanol tion impure	
3b	1.66×10⁶ or 1660000	1.45cm ³ petrol = 0.00145 litres petrol 1g petrol = 0.00145 litres petrol = 48.0 kJ 50 litres petrol = 48.0 kJ $\times \frac{50}{0.00145}$					
4a	Hydrogen bonding in geraniol	Geraniol conto • all si Hydrogen bon ease of evapor	ains hydrogen bon ubstances with N, ding brings molec ration of the mole	ding as it con O or F attac ules closer to ccule.	tains a hydroxyl - hed to hydrogen gether, raising th	OH group. results in hydrogen bonding e boiling point and reducing	1 the
4b(i)	Aldehyde or alkanal	<u> </u>	Alcohols —OH	Ald — a	ehydes	Carboxylic Acids	
4b(ii)	Diagram showing:	$H_{3}C - (CH_{2})_{8} - C - C - C - OH$					
4c	Open question answer to include:	3 mar Demonstrates of understanding of involved. A good the chemistry H logically correc statement of th involved and the these to respon	k answer a good of the chemistry d comprehension of nas provided in a t, including a he principles e application of nd to the problem.	2 mar Demonstrates understanding involved, makin statement(s) v the situation, : problem is und	rk answer a <u>reasonable</u> of the chemistry ng some which are relevant to showing that the erstood.	1 mark answer Demonstrates a <u>limited</u> understanding of the chemistr involved. The candidate has ma some statement(s) which are relevant to the situation, show that at least a little of the chemistry within the problem i understood.	y ide ing is

5a	2.76x10 ²¹	From graph: At voltage=20mV, volume = 110cm ³ 1 mol ethanol = 46g = 24 litres = 6.02×10 ²³ molecules 0.110litres = 6.02×10 ²³ molecules × ^{0.110} / ₂₄ = 2.76×10 ²¹ molecules							
5b	CH3CH2OH + O2 ↓ CH3COOH + H2O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
6a	Ӊ Ӊ н−с−s−s−с−н н ่	Methyl -CH $_3$ groups must each be attached to a sulphur and this leaves a bond left for the sulphur to be attached to each other.							
6b	2 marks for:	 First Mark: Permanent dipole-permanent dipole attractions or polar-polar attractions/forces (¹/₂mark) weak intermolecular bonds/forces (¹/₂mark) Second Mark: If permanent dipole-permanent dipole attractions mentioned for 1st Mark: Mention of difference in electronegativities or indication of polar bonds or indication of permanent dipole (1mark) If London dispersion forces mentioned for 1st Mark: instantaneous dipoles or temporary dipoles or uneven distribution a followers an alext instantaneous dipoles or temporary dipoles or uneven distribution a followers an alext instantaneous dipoles or temporary dipoles or uneven distribution a followers an alext a followers an alext a followers an alext a followers and alext a followers and alext a followers and alext b followers and alext a followers and alext b followers and alext b followers and alext b followers and alext							
6 C(i)	Pipette or burette	Pipettes and burettes have the level of accuracy required to perform the titration. Measuring cylinders and syringes lack the accuracy required.							
6c(ii)	A solution of precisely known concentration	A standard solution is a solution where the concentration is known.							
6c(iii)	1.47×10 ⁻³	no. of mol Cl_2 = volume x concentration = 0.0294litres x 0.01mol L^1 = 2.94x10 ⁻⁴ mol 4 Cl_2 + H_2S + $4H_2O$ \rightarrow $SO_4^{2^-}$ + $10H^+$ + $8Cl^-$ 4mol 1mol 2.94x10 ⁻⁴ mol 7.35x10 ⁻⁵ mol 50cm ³ water sample contains 7.35x10 ⁻⁵ mol of Cl_2 1000cm ³ water sample 7.35x10 ⁻⁵ mol x ¹⁰⁰⁰ / ₅₀							
7a	2.9	Problem Solving: reading from a graph							
7b	Covalent	Problem Solving: interpreting information from a graph							
7c	Cross at (2.6,0.8)	1 mark for both: average electronegativity = 2.6 and difference in electronegativity = 0.8 $4 \cdot 0$ $3 \cdot 5$ $3 \cdot 0$ $2 \cdot 5$ Difference in electronegativities $1 \cdot 5$ $1 \cdot 5$ $1 \cdot 0$ $0 \cdot 5$ $0 \cdot 0$ $0 \cdot 5$ $1 \cdot 0$ $1 \cdot 5$ $1 \cdot 0$ $0 \cdot 5$ $0 \cdot 0$ $0 \cdot 5$ $0 \cdot 0$ $0 \cdot 5$ $1 \cdot 0$ $1 \cdot 5$ $1 \cdot 0$ $0 \cdot 5$ $0 \cdot 0$ $0 \cdot 5$ $1 \cdot 0$ $0 \cdot 5$ $0 \cdot 0$ $0 \cdot 5$ $0 \cdot 0$ $0 \cdot 5$ $1 \cdot 0$ $1 \cdot 5$ $2 \cdot 0$ $2 \cdot 5$ $3 \cdot 0$ $3 \cdot 5$ $4 \cdot 0$ $4 \cdot 5$ Average electronegativity							

6

8a	Diagram of hexan-1-ol	CH3—CH2—CH2—CH2—CH2—CH2—OH (hexan-2-ol and hexan-3-ol structures accepted)			
8b	Answer to include:	Further the O atom is from end of chain, the lower the flash point			
9a (i)	ester link	$ \begin{array}{c} O\\ \parallel\\ -C-O\\ ester link \end{array} $			
9a (ii)	Diagram showing:	O NH ₂ C-CH-CH ₂ -C O OH			
9a (iii)	Essential	Amino acids which cannot be made by the body are described as essential amino acids and must be consumed through our diet.			
9 b(i)	69-70mg	Soft Drink X: Peak Area = 68000 at retention time 96s From graph: Peak Area = 68000 gives caffeine concentration = 70mg			
9b(ii)	Dilute soft drink Y	I the peak area goes off the scale, the sample should be diluted before chromatography. The concentration of caffeine in the chromatogram must then be multiplied to calculate the original concentration of caffeine.			
10a	It is polar or contains hydrogen bonding	Methanamide contains polar bonds (C=O) and bonds with have hydrogen bonding (N-H)			
10b(i)	methylmethanoate	$H - C = \begin{pmatrix} 0 & H & + H_2 \\ 0 & -C - H \\ & \downarrow & \text{methylmethanoate} \\ H & H \\ H - C = \begin{pmatrix} 0 & H \\ + & HO - C - H \\ 0 - H & \downarrow & \text{methanol} \\ \end{pmatrix}$			
10b(ii)	58%	Atom economy = $\frac{\text{mass of product}}{\text{total mass of products}} \times 100 = \frac{45.0}{77.0} \times 100 = 58.4\%$			
10c	70%	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{Imol HCOOH} = (2x1) + (1x12) + (2x16) = 2 + 12 + 32 = 46g \\ \mbox{Imol HCONH}_2 = (3x1) + (1x12) + (1x16) + (1x14) = 3 + 12 + 16 + 14 = 45g \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \mbox{HCOOH} + \mbox{NH}_3 & \longrightarrow & \mbox{HCONH}_2 + \mbox{H}_2 \mbox{O} \\ \mbox{Imol} & 1 \mbox{Imol} \\ \mbox{46g} & 45g \\ \mbox{1.38g} & 45g \times \frac{1.38}{46} \\ = 1.35g \mbox{(Theoretical)} \\ \mbox{Vield} = & \frac{\mbox{Actual}}{\mbox{Theoretical}} \times 100 \\ \end{array} = & \frac{\mbox{0.935}}{\mbox{1.35}} \times 100 \\ = & 70\% \end{array}$			
11a (i)	3-methylbutan-2-ol	3-methylbutan-2-ol Methyl-CH3 side groups on C3 Four carbons on main chain Single bonds on main chain Single bonds on main chain			

11a (ii)	Diagram of 2-methylpentan-1-ol	^т Ӊ Ӊ ӉҥҪҥӉ н <i>–с–с–с–с</i> –н Ӊ Ӊ Ӊ Ӈ _О н						
11b(i)	4BF ₃ + 3NaBH₄ ↓ 2B2H6 + 3NaBF4	4BF ₃ + 3	NaBH	4	+ 2B;	2H6 + 3Na	BF4	
		0 0 6	2B + 3 H ₂ + ½ 2B + 1½	$\begin{array}{rcl} BH_2 & \rightarrow & B_2H_6 \\ O_2 & \rightarrow & H_2O \\ O_2 & \rightarrow & B_2O_3 \end{array}$		∆H= +36 kJ mol ⁻¹ ∆H= -236 kJ mol ⁻¹ ∆H= -1274 kJ mol	l -1	
11b(ii)	-2168	0×-1 0×3 ©	B₂ 3H₂ + 1½ 2B + 1½	$_{2}H_{6} \rightarrow 2B + 3H_{2}O_{2} \rightarrow 3H_{2}O_{2}O_{2} \rightarrow B_{2}O_{3}$	H ₂	∆H= -36 kJ mol ⁻¹ ∆H= -858 kJ mol ⁻¹ ∆ H= -1274 kJ mo	l -1	
		Add ❶'+❷'+❸	B₂H6 + 3	$BO_2 \rightarrow B_2O_3 +$	3H₂O .	∆H= -2168 kJ mol	-1	
12a	Diagram showing:		└── Syringe	or	Ξ	measu cylind wate deli tu bea	ring der r very be aker	
12b(i)	Water bath or heating mantle	A water bath or heating mantle are appropriate apparatus as temperature is controllable with a thermostat.						
12b(ii)	Protein denatures or changes shape	Proteins are held heating a protein chains and perma	l together 1 breaks th 1 nently cho	by a variety of ese intermolec nges the shape	intermo ular bon of the j	lecular bonds and ds between the pi protein.	rotein	
13a	F2 is below MnO4 ⁻ in electrochemical series	Acidified permanganate solution is above F_2 in the electrochemical series Oxidising agents are listed in the electrochemical series with the most powerful ones at the bottom. Oxidising agents will cause any of the reactions above it in the electrochemical series to react in the reverse direction to the direction written in the electrochemical series						
		Ste	p	Reactants (before Arrow)		Products (after Arrow)		
13b(i)	Initiation	Initia	tion N	o free radicals on Left Hand Side		Free radicals on Right Hand Side		
		Propage Termin	ation ation	Free Radicals for Free radicals on Left Hand Side	und on both	sides of arrow No free radicals on Right Hand Side		
126/**	2F [•] → F ₂	Termination step	os are when	n two free radi	cal speci	es join together t	to form	
120(11)	$CH_3^{\bullet} + CH_3^{\bullet} \longrightarrow C_2H_6$	a molecule with n	io unpaired	electrons.	•			
13c(i)	exothermic or heat given out	From Graph: Dec ∴Decrease in ter A decrease in ter ∴ Forward React	rease in To mperature mperature tion (Formo	emperature giv favours forwa always favours ation of C2F4) is	es highe rd react the exc s exothe	r concentration o ion which forms C othermic reaction rmic	f C2F4 2F4	

13c(ii)	concentration	 Increasing pressure favours the pressure-reducing reaction Reverse reaction reduces pressure (2mol of gas → 1mol of gas) ∴ Increase in pressure favours reverse reaction ∴ Increase in pressure decreases concentration of C₂F₄ 					
14a	Octadec-9,12,15-trienoic acid	Octadec-	9,12,15-tri Position of C=C double bonds	enoic acid c=c Carboxyl - COOH group on C1			
14b(i)	Neutralisation	Fatty acids are neutralis	ed by alkali to form a salt	/soap and water			
14b(ii)	Answer to include:	1 st mark Soaps have hydrop 2 nd mark -COO ⁻ Na [*] is water 3 rd mark Emulsion is formed	hobic/oil-soluble tail and hydro -soluble part and hydrocarbon c I when oil-grease is held inside c	philic/water-soluble head hain is oil-soluble part a ball of water-soluble heads			
		3 mark answer	2 mark answer	1 mark answer			
15	Open Question answer to include:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			